Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Curr Res Pharmacol Drug Discov ; 2: 100045, 2021.
Article in English | MEDLINE | ID: covidwho-1351596

ABSTRACT

Remdesivir, a monophosphate prodrug of nucleoside analog GS-441524, is widely used for the treatment of moderate to severe COVID-19. It has been suggested to use GS-441524 instead of remdesivir in the clinic and in new inhalation formulations. Thus, we compared the anti-SARS-CoV-2 activity of remdesivir and GS-441524 in Vero E6, Vero CCL-81, Calu-3, Caco-2 â€‹cells, and anti-HCoV-OC43 activity in Huh-7 â€‹cells. We also compared the cellular pharmacology of these two compounds in Vero E6, Vero CCL-81, Calu-3, Caco-2, Huh-7, 293T, BHK-21, 3T3 and human airway epithelial (HAE) cells. Overall, remdesivir exhibited greater potency and superior intracellular metabolism than GS-441524 except in Vero E6 and Vero CCL-81 â€‹cells.

2.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-917237

ABSTRACT

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Azetidines/administration & dosage , COVID-19 Drug Treatment , COVID-19/immunology , Macaca mulatta , Neutrophil Infiltration/drug effects , Purines/administration & dosage , Pyrazoles/administration & dosage , Sulfonamides/administration & dosage , Animals , COVID-19/physiopathology , Cell Death/drug effects , Cell Degranulation/drug effects , Disease Models, Animal , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Janus Kinases/antagonists & inhibitors , Lung/drug effects , Lung/immunology , Lung/pathology , Lymphocyte Activation/drug effects , Macrophages, Alveolar/immunology , SARS-CoV-2/physiology , Severity of Illness Index , T-Lymphocytes/immunology , Virus Replication/drug effects
3.
bioRxiv ; 2020 Sep 16.
Article in English | MEDLINE | ID: covidwho-807103

ABSTRACT

Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV-2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL